Cloud Computing – Benefits & Risks

IT Strategy & Management
Highlights of the Cloud Computing Landscape

What is cloud computing?
• A way to delivering efficiency
• Accessing resources remotely
• A way to provide value with computational devices
• Extracting Services from servers and networks
• Advantages of computing without one

What is driving the trend?
• Depending on a system administrator to configure what you need will take years.
• Free competition and diversity
• The cloud as a utility.
Cloud Computing Economics

<table>
<thead>
<tr>
<th>Frequency of innovation</th>
<th>More consumer-like user interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pay for actual usage</td>
<td>Lower integration costs</td>
</tr>
<tr>
<td>Analytics included – no separate charge</td>
<td>No/Minimal upgrade costs</td>
</tr>
<tr>
<td>Faster time to deploy</td>
<td>No maintenance fee increases</td>
</tr>
<tr>
<td>No server costs</td>
<td>No data center impact</td>
</tr>
<tr>
<td>Infrastructure savings</td>
<td>No database costs</td>
</tr>
<tr>
<td>No storage costs</td>
<td>Lower IT staffing costs</td>
</tr>
<tr>
<td>No hardware/DB provisioning</td>
<td>Easier customization</td>
</tr>
<tr>
<td>Mobile support</td>
<td>Overall end user experience</td>
</tr>
</tbody>
</table>
Enterprise Cloud Computing

Competency Areas

• Ability to standardize and compare economic models for IT/cloud services.
• Effective prototyping and vendor selection processes.
• Technical ability to adopt and execute with cloud computing services.
• Incorporation of cloud computing into strategic IT planning.
Cloud Computing Growth: An Operational Model

ISP 1.0: Provided access to the Internet (Dial-up, ISDN, T1)

ISP 2.0: Access to servers at the Internet access point

Colo (ISP 3.0): Racks for your equipment at the Internet access point

ASP (ISP 4.0): Hosted Software as a Service (SaaS) at the Internet access point

Cloud (ISP 5.0): Dynamic, Internet-optimized Infrastructure for hosting your applications
Problems, Solutions & Providing Opportunities

Problems

- **Packaged Software:** Large early investment before any business benefit.
- **Project Prioritization:** IT focuses on process rather than outcome. IT departments are responsible for non-critical applications.

Solutions

- **Pay-as-you-go:** Low initial investment. Cash flows better match total system cost.
- **Outsourcing:** Outsource non-critical applications and allow IT to focus on critical applications and outcomes.
How Cloud Computing Will Change Enterprise Business Systems

• The creation of a new generation of ERP, CRM, and SCM

• A new lightweight form of real-time partnerships and outsourcing with Enterprise Business Systems suppliers

• A new awareness and leverage of the greater Internet

• A reconciliation of traditional SOA with the cloud

• More tolerance for innovation and experimentation from businesses

• The slow-moving, dinosaur firms will have trouble keeping up more nimble adopters and fast-followers
ERP in the Cloud?

Epicor True SOA™: Provides a configurable global ERP platform, and far-reaching functionality, we are redefining the enterprise application software experience.

QAD On Demand: A Web-based, software as a service (SaaS) solution that provides a flexible deployment alternative for QAD Enterprise Applications.

NetSuite: SuiteCloud is a comprehensive offering of on-demand products with the benefits of cloud computing.
CRM and Cloud Computing

- Run code in the cloud so there are no limitations on creating CRM logic
- Accelerate Business Results with a scalable solution
- Use analytics dashboards
- Leverage an existing ERP investment
- Deploys rapidly
- Real-Time Workflow & Approvals
- Real-Time Mobile Deployment
- Lower Total Cost of Ownership
Cloud Computing: Balancing risks and opportunities

“The promise of cloud computing is arguably revolutionizing the IT services world by transforming computing into an ubiquitous utility.”

“In an environment where privacy has become paramount to enterprise customers, unauthorized access to information in the cloud is a significant concern.”

“…by outsourcing portions of information management and IT operations, enterprise workers will be free to improve processes, increase productivity and innovate…”
Cloud Computing Essential Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-demand self-service</td>
<td>The cloud provider should have the ability to automatically provision computing capabilities, such as server and network storage, as needed without requiring human interaction with each service's provider.</td>
</tr>
<tr>
<td>Broad network access</td>
<td>According to NIST, the cloud network should be accessible anywhere, by almost any device (e.g., smart phone, laptop, mobile devices, PDA).</td>
</tr>
<tr>
<td>Resource pooling</td>
<td>The provider’s computing resources are pooled to serve multiple customers using a multitenant model, with different physical and virtual resources dynamically assigned and reassigned according to demand. There is a sense of location independence. The customer generally has no control or knowledge over the exact location of the provided resources. However, he/she may be able to specify location at a higher level of abstraction (e.g., country, region or data center). Examples of resources include storage, processing, memory, network bandwidth and virtual machines.</td>
</tr>
<tr>
<td>Rapid elasticity</td>
<td>Capabilities can be rapidly and elastically provisioned, in many cases automatically, to scale out quickly and rapidly released to scale in quickly. To the customer, the capabilities available for provisioning often appear to be unlimited and can be purchased in any quantity at any time.</td>
</tr>
<tr>
<td>Measured service</td>
<td>Cloud systems automatically control and optimize resource use by leveraging a metering capability (e.g., storage, processing, bandwidth and active user accounts). Resource usage can be monitored, controlled and reported, providing transparency for both the provider and customer of the utilized service.</td>
</tr>
</tbody>
</table>
Cloud Computing Service Models: Risks and Benefits

<table>
<thead>
<tr>
<th>Service Model</th>
<th>Definition</th>
<th>To Be Considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure as a Service (IaaS)</td>
<td>Capability to provision processing, storage, networks and other fundamental computing resources, offering the customer the ability to deploy and run arbitrary software, which can include operating systems and applications. IaaS puts these IT operations into the hands of a third party.</td>
<td>Options to minimize the impact if the cloud provider has a service interruption</td>
</tr>
</tbody>
</table>
| Platform as a Service (PaaS) | Capability to deploy onto the cloud infrastructure customer-created or acquired applications created using programming languages and tools supported by the provider | • Availability
• Confidentiality
• Privacy and legal liability in the event of a security breach (as databases housing sensitive information will now be hosted offsite)
• Data ownership
• Concerns around e-discovery |
| Software as a Service (SaaS) | Capability to use the provider’s applications running on cloud infrastructure. The applications are accessible from various client devices through a thin client interface such as a web browser (e.g., web-based e-mail). | • Who owns the applications?
• Where do the applications reside? |
Cloud Computing Deployment Models: Risks and Benefits

<table>
<thead>
<tr>
<th>Deployment Model</th>
<th>Description of Cloud Infrastructure</th>
<th>To Be Considered</th>
</tr>
</thead>
</table>
| Private cloud | • Operated solely for an organization
 • May be managed by the organization or a third party
 • May exist on-premise or off-premise | • Cloud services with minimum risk
 • May not provide the scalability and agility of public cloud services |
| Community cloud | • Shared by several organizations
 • Supports a specific community that has shared mission or interest.
 • May be managed by the organizations or a third party
 • May reside on-premise or off-premise | • Same as private cloud, plus:
 • Data may be stored with the data of competitors. |
| Public cloud | • Made available to the general public or a large industry group
 • Owned by an organization selling cloud services | • Same as community cloud, plus:
 • Data may be stored in unknown locations and may not be easily retrievable. |
| Hybrid cloud | A composition of two or more clouds (private, community or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load balancing between clouds) | • Aggregate risk of merging different deployment models
 • Classification and labeling of data will be beneficial to the security manager to ensure that data are assigned to the correct cloud type. |
A Balancing Act
References

